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Abstract-A generalized and mathematically rigorous model is developed to treat the partially
debonded circular inhomogeneity problem in piezoelectric materials under antiplane shear and in
plane electric field using the complex variable method. The principle of analytical continuation and
the complex series expansion method were employed to reduce the formulations into Riemann
Hilbert problems. This enabled the explicit determination of the complex potentials inside the
inhomogeneity and the matrix. The resulting closed form expressions were then used to obtain the
energy release rate for several interesting cases involving partial-debonding at the inhomogeneity
matrix interface. ,e 1997 Elsevier Science Ltd.

I. INTRODUCTION

In view of their potential use in large space and aircraft structures, satellites and other
applications, smart materials and adaptive structures have gained significant attention from
the scientific community. For example, piezoelectric ceramics have attracted attention as
sensors for monitoring and as actuators for controlling the behavior of advanced aerospace
structures. Piezoelectric composites in the form of electromechanical transducers have also
been used in underwater hydrophones and medical images devices.

Despite the extensive efforts currently being devoted to the development of piezoelectric
composite materials, the theoretical understanding of these materials is quite limited in
comparison with the uncoupled response of traditional composites. This may be partly due
to the complexities arising from the electromechanical coupling and partly to the scarcity
of experimental data.

Piezoelectric composite materials are generally characterized by heterogeneity,
anisotropy, load sharing and interfaces. Indeed, increasing evidence suggests that the
presence of inhomogeneities in the form of second phase particles, precipitates, fibre
reinforcement, voids and microcracks often govern the mechanical and electric behaviour
and the overall failure mechanism of these solids. For example, the thermal expansion
mismatch between the fibres and the host matrix of most composites combined with the
large temperature change during fabrication and cooldown results in high tensile residual
stresses which lead to matrix microcracking and/or fibre debonding. Accordingly, an accu
rate assessment of the influence of these inhomogeneities upon the mechanical and electric
behaviour and the integrity of these composites would be of great value to engineering
designers and material scientists.

Indeed, a number of contributions concerning the inhomogeneity problem in piezo
electric materials have appeared in the literature. These include the work of Deeg (1980),
Wang (1992), Benveniste (1992) and Dunn and Taya (1993), among others, on the fully
bonded inhomogeneity problem. Efforts have also been devoted to the straight crack
problem in this important class of materials. see, for example, the work of McMeeking
(1989), Pak (1990), Sosa and Pak (1990), Suo et al. (1992), Yang and Suo (1994), Park
and Sun (1995), Zhang and Tong (1996).

In this article. however, a generalized and mathematically rigorous model is developed
to treat the partially-debonded circular inhomogeneity problem in piezoelectric materials
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under antiplane shear and inplane electric field using the complex variable method. The
principle of analytical continuation and the complex series expansion method are employed
to reduce the formulations into two Riemann-Hilbert problems. This enables the explicit
determination of the complex potentials of the problem and the energy release rate at the
tips of the resulting curvilinear crack.

This article is divided into five sections. Following this brief introduction, Section 2
outlines the basic equations needed to formulate the problem. In Section 3, we provide the
approach adopted in reaching a solution. A number of interesting cases are examined in
Section 4 and finally we conclude the paper.

2. PROBLEM STATEMENT AND FORMULATION

Consider a partially debonded circular piezoelectric inhomogeneity with a radius a in
an infinite piezoelectric matrix subject to an inplane (x - y or r - e plane) electric field as
well as an antiplane shear at infinity, as shown in Fig. l(a). The inhomogeneity and the
matrix have different elastic, electric and piezoelectric properties and both are assumed to
be transversely isotropic with respect to the longitudinal direction (z direction).
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Fig. 1. A schematic of a partially debonded piezoelectric inhomogeneity (a) in the original x- y

coordinate system and (b) in the transformed ~ -rr coordinate system.
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The respective regions occupied by the matrix and the inhomogeneity will be referred
to as regions I and 2 and the quantities associated with the matrix and the inhomogeneity
will be denoted by the corresponding superscripts or subscripts. The interface between
regions I and 2 is denoted by L( = L, +L h), where L, represents an insulated and a traction
free interfacial curvilinear crack and L h is the remaining part of L along which the inhomo
geneity and the matrix are perfectly bonded.

For this problem, the out-of-plane displacement wand the electric potential ¢ are only
functions of the variables x and y, such that

w = \1'(x,y) ¢ = ¢(x,y).

The equilibrium equations for the stresses and the electric displacements are

where (Yox and (Yo, are the shear stresses, while D, and D, are the electric displacements,
For linear piezoelectric materials, the constitutive relations can be written as

D x = elsi'o,+kIIE,

(1)

(2)

(3)

where lox and "101 are the shear strains, E, and E, are the electric fields, GL is the longitudinal
shear modulus, elS denotes the piezoelectric modulus and k ll represents the dielectric
modulus.

The shear strains Yox and i'o, and the electric fields E, and E, are related to the
displacement wand the electric potential ¢ by the following relations:

al1'
'" --
lox - ax

C\!'

YO:... =----:::--
cy

(4)

Substituting (3) and (4) into (2), we obtain the following governing equations:

(5)

where V2 is the Laplacian operator,
The boundary conditions at the interface between the inhomogeneity and the matrix

can be expressed as

(6)

(7)

which describe the electrically impermeable and traction-free conditions along the curvi
linear crack. The condition that the normal component of the electric displacement can be
taken as zero at the crack faces involves two assumptions; namely: (I) that no free charge
resides on the crack face and (2) that the electric displacement within the crack is negligible.
For a homogeneous material with a slit crack, the model of electrically impermeable cracks
is appropriate when the aspect ratio of the flaw thickness to its length is much larger than
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the ratio of the dielectric constant of the flaw to that of the material (McMeeking, 1989;
Zhang and Tong, 1996). For the current problem where there are three electric media (flaw
and two bonded materials), the assumption of electrically impermeable cracks should be
examined further. This is currently being persued by the authors.

For simplicity, a new dimensionless coordinate system (c;, '1) is introduced with ( = x/a
and '1 = y /a, as shown in Fig. I(b). In this coordinate system. regions I and 2 are trans
formed, respectively, into the exterior and the interior regions of a unit circle r. In this
case, r consists of two parts C and r" which correspond to L, and L" in the original
coordinate system (x,y). The points er l = eili , and er 2 = elll , in the new coordinate system
correspond to the tips of the interfacial crack, t I = aeili ] and t 2 = aei/i, in the original
coordinate system.

Equation (5) indicates that Ii' and ¢ are harmonic functions which can be taken as the
real part of some analytic functions of the complex variable Z = (+ i'1, such that

I
H" =-- ('P(Z) + 'P (Z))

2G[

1 -_.
¢ = 2~(<1>(Z) +<1>(Z)) (8)

where 'P and <1> represent the analytic functions and the overbar denotes the complex
conjugate. Accordingly, the stress and the electric displacement can be expressed as

I [e - JD,-iD, = - ~'P'(Z)-<1>'(Z)
a GI.

where the prime denotes the derivative with respect to the argument.
In terms of polar coordinates rand 0, the above expressions become

i ---~-
1\'.(/ = -1- [Z'I"(Z) - Z'P'(Z)]

...G[

i
cPo = ~k [Z<1>'(Z)-Z<1>'(Z))

- II

and

Substituting (10) and (11) into (6) and (7) leads to

,
--~ eT< ---

er'P~ (er) + er'P~ (er) + -k-
2
"':- [er<1>~ (er) + er<1>~ (er)] = 0 er E C
II

(9)

(10)

(11 )

(12)

(13)
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(14)

(15)

,
e-

= O"\}J;(O") +O"\}J;(O") + k~5 [0"$'2(0")+0"$;(0")] O"Erh (16)
11

,

= ~I~[O"\}J;(O")+O"\}J;(O")]-[O"$;(O")+O"$;(O")] O"Erh (17)
Gi

(18)

(19)

where III = GUGl, 112 = kTI/k: l •

The main task now is to obtain the complex potentials which satisfy the continuity
conditions given by eqns (12)-( 19). In the next section, a general solution is presented for
the problem in which the complex potentials are derived explicitly for both the inhomo
geneity and the matrix.

3. SOLCTION

For convenience, let us introduce the following new functions

(20)

(21 )

(22)

(23)

within the matrix or the inhomogeneity. Using the principle of analytical continuation, the
above functions are extended into their complementary regions such that

(24)

IZI> 1 (25)

0< IZI < I (26)
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(27)

Hence, the boundary conditions (12)-(19) can be written as

J
ej s

[ui (O')-uz (0')] + -k
2

[vi (O')-Vz (0')] = 0 O'Er,
II

el s
-[ui(O')-uj(O')]-[vt(O')-vj(O')] = 0 O'Er,
Gl

Jejs
-[ui(O')-uz(O')]-[vi(O')-vz(O')] = 0 O'Er,GZ

els
lui (0') - uj (0')] + - [vi (0') - vj (0')]

kl l

(28)

(29)

(30)

(31 )

2

= -[ui(O')-uz(O')]- ke~s [vi (O')-vz(O')] O'Erb (32)
11

els
- lui (0') - uj (0')]- [vi (0') -vj (0')]
Gl

(34)

(35)

where the superscripts + and - are used to denote the limit of a function as Z tends to 0'
from IZI > 1 and IZI < 1, respectively.

From (28)-(33), it is easy to show that

and
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e:s eT<
~ui(a)+ ~- ut(a)-vi(a)-vi(a)
Gl GI -

1971

Let us define two functions WI (Z) and W2(Z), such that

(38)

(39)

which are holomorphic in the region IZI > O. Thus, the functions WI(Z) and W2(Z) can be
expanded in the region IZI > 0 in terms of Laurent series

x

wl(Z) = L (ekZk+ 1 +!kZ - ik + I ))
k~O

x

w2(Z) = L (qk Zk + 1 +hkZ- 1k + I )).
k~O

(40)

(41 )

Through lengthy manipulations (using eqns (28), (30), (34)-(41)), we obtain the
following Riemann-Hilbert problems:

and

where

with

ui(a)-uj(a) = 0 aEC

ui(a)+ul-(a) = FI(a) aErh

t'i(a)-vi(a) =0 aEr,

ri(a)+vj(a) = F2(a) aErb

x

FI(a) = L (Pkak
+! +qka-lk~I»)

k~O

x

F2(a) = L (rkak
+! +Ska (hi!)

k~O

(42)

(43)

(44)

(45)
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(48)

(49)

(50)

(51)

(52)

(53)

(54)

Since no singularities exist inside the inhomogeneity and the matrix, the complex potentials
\f'I (Z), <1>1 (Z), \f'2(Z) and <1>2(Z) must be holomorphic in their respective regions. Therefore,
we can expand functions \f'I (Z) and <1>1 (Z) into the following Laurent series:

x

\f'1 (Z) = L (afZk+ I +hfZ rkT II) IZI > I
k~O

'-

<1>1 (Z) = L (efZ k
-

1 +dfz Ik+ II) IZI > I
k~O

while \f'2(Z) and <1>2(Z) into Taylor series:

f.

\f'2(Z) = L a~ZkTI IZI < I
k~O

x

<1>2(Z) = L clzk
+

I IZI < I
k~O

(55)

(56)

(57)

(58)

where the constant terms relating to rigid-body displacements have been omitted. The
coefficients af and ef can be readily determined from the remote boundary conditions
whereas the coefficients hI, dL a~ and d are unknown and have to be determined as part
of the solution.

Substituting (55)-(58) into (20)-(27), we have

x

UI(Z) = L(k+l)(afZk+I-hfZ Ik+I I ) IZI>I
k~O

k

UI(Z) = L(k+l)(b[Zkll_a[Z-lk-I I ) O<IZI<I
k=O

x

I"I(Z) = L(k+l)(efzhI_dfZ-1k+I I ) IZI>I
k~()

(59)

(60)

(61)
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y~

v1(Z) = L(k+l)(dlZk+l-c1Z-lk+ll) 0< IZI < I
k~O

y~

u:(Z) = L(k+l)aIZk- 1 O<IZ!<l
k~O

1973

(62)

(63)

x

u:(Z) = - L(k+l)aIZ
k~O

Ik T]} IZI> 1 (64)

x

L'2(Z) = L (k+ I)dzk
+ I 0 < IZI < 1

k~O

(65)

x

t':(Z) = - L (k+ l)clz
k~O

(k+ II IZI > 1. (66)

The solution of (42) and (43) can be derived explicitly as

where X(Z) is the Plemelj function of the problem defined by

(67)

(68)

(69)

This function is holomorphic in the entire Z-plane, except along the cut of the bonded arc
r h on which X+(rr) = -X-(rr), The branch of X(Z) with limz~x[ZX(Z)l = 1 has been
chosen so that it can be expanded at points Z = x and Z = 0 such that

Xl'
X(Z) = L :x*Z -111+ I) -- = L:X Z I ~~Il as Z -> CD

1/=0 n X(Z) 1/=0 11

(70)

II

':1.* == \""' '\J*~'* rrm,.,n--m
n L rmfn-m v I v~

m=O

Il

f3* = '"' ~'*"-'* rr !/Irr-(n--m)
n L fml//--mVj v2

m=O

'I

'V _ ,,_ "'~'lll,-r-/~-tH
\An - L (mil/ ,v l.l ~

111=0

as Z -> 0 (71 )

(72)

(73)

(74)
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with

(75)

(76)

by
The functions Ux(Z), Uo(Z), Vx(Z), Vo(Z), R(Z) and R(Z) in (67) and (68) are given

with

x n+ 1

Ux(Z) = L p" L'J.mZ n +2- m
n=O m=O

1 x n+ 1

Uo(Z) = - L qn L f3m zm - n- 1
X(O) n~O m~O

x n+ 1

VX)(Z) = L rn L 'J.mZ,,+2-m
n=O m=O

x x.

R(Z) = h*+ L hZk +1+ L hkZ-Ik+11
k~O k~O

R(Z) = h-*+ t i;Zk+1 + i h:Z- 1k + l
)

k~O k~O

x

10 = L (m+ 1)'J.m+la~,
m=O

x

Ik = L (m+k)ama~J+k_1 (k ~ I)
m=O

- 1 f -I
hk = - X(OLf:'n(m+k+ 1)f3m cm+k (k ~ 0)

(77)

(78)

(79)

(80)

(81)

(82)

(83)

(84)

(85)

(86)

(87)

(88)
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x

-" I/0 = L. (m + I )O:m+ I em
m=O

x

l; = L (m+k)O:mC~'+k_l (k ~ I).
m=O

From (38) and (39), we have

1975

(89)

(90)

(91)

(92)

Equation (67), (68), (91) and (92) constitute the general explicit form of the solution
to the present problem with the unknown coefficients eb k gk and hk (contained in (40)
and (41)) to be determined.

Substituting (59)-(66) into (38) and (39) and comparing the like powers to Z with
those in (40) and (41), we obtain

9k=(k+I)(~iaf-ef)

(93)

(94)

(95)

(96)

(97)

(98)

Expanding (67) and (68) into Laurent series' in the matrix and comparing them with
(59) and (61) render that

(100)
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x k--- I

- 'J.th* - L'J.t-m+ lfm- L '.1.~hk
m=O m=O

m-I (k ~ 1) (101 )

x k-I

- 'J.:/;* - L '.1.t+m+ I~' - L :x;;,hk_m 1 (k ~ I) (102)
m=O m=O

where a smaller value of the summation upper limit (k or p + I) is implied.
The unknown coefficients ebfk' 9b hb al, bI, dI can be obtained by solving eqns (93)

(102), once aI and c1 are determined from the boundary conditions at infinity. This allows
the determination of the stress and electric fields in the inhomogeneity and the matrix.

An interesting aspect of the present solution is the ability to determine the energy
release rate of the resulting curvilinear crack. The internal energy W in a piezoelectric solid
of a unit thickness and a cross-sectional area D can be written as

It can be shown that

W= Wo+~W

(103)

(104)

where Wo is the internal energy in the absence of inhomogeneities and ~W represents the
change of the internal energy due to the presence of the inhomogeneity and its consequent
debonding. Following the approach of Sih and Liebowitz (1968) and considering the
interfacial conditions of the debonding of an inhomogeneity, ~W can be evaluated as

AW 7[ (Ibl ~bl) 7[ (Id
'

--,TJTdl)
L.1 = -- ao o+ao· 0 + -- Co 0+(0 0 .

2Gl 2k: 1

Therefore, the energy release rate can be defined as (Zhang and Tong, 1996):

for crack tip thand

(105)

(106)

(107)

for crack tip f2 , see Fig. 1(a).
The previous general solution is valid for any antiplane mechanical loads and inplane

electric fields at infinity. Let us now consider the case of an arc-crack symmetrically placed
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1977

with respect to the x-axis ({3J = - fJl = 13), Fig. 2, under remote uniform loading conditions.
By applying the remote loading conditions, we can determine

cA = a(Q~+ iQ~)

ai = d = 0 (k ~ I)

(108)

(109)

(lID)

where P~, Pt, Q~ and Q~ are evaluated for four special cases in the Appendix.
Accordingly, the energy release rates for the symmetric arc-crack can be derived such

that

na sin 13 • • • *) 13
91 = [Po(2Po-Po)(l+cosfJ)+P~(2P~-po (I-cos )]

4Gl

na sin] 13
+ [P·(2P*-p*) + P*(2p· -p~)]4G I 0 0 0 0 0

L

nasin 13
+ --- [Q~(2Q~-r~)(l +cos 13) + Qd(2Qt-rt)(l-cos 13)]

4ki I

for crack tip f l , and

na sin 13 • • • *) 139] = 4Gl [Po(2Po-Po)(l+cosf3)+Pt(2Pt-po (I-cos )]

na sinJ 13
- --~- [P~(2P6-pt) +P~(2P~ - p~)]

4Gl

(111 )



1978 Z. Zhong and S. A. Meguid

na sin {3
+ [Q~(2Q~-r~)(1 +cos{3)+QS(2QS-rS)(I-cos{3)]

4kL

(112)

for crack tip t2, where

el se· = p.+ -Q.o 0 k 1 0
11

els
e* = p*+ -Q*o 0 k l 0

11

1

• -~p.-Q.go - 1 0 0
GL

4. EXAMPLES AND DISCUSSION

(117)

(118)

(119)

(120)

In the following subsections, we examine a number of interesting cases which dem
onstrate the validity and versatility of the general formulations.

4.1. Straight crack in a homogeneous piezoelectric material
Consider a straight crack with length 21 along the y-axis in a homogeneous material

under antiplane shear and in plane electric field (Fig. 3). This problem has been studied by
many researchers (see, for example, Pak, 1990; Zhang and Tong, 1996). In this case, we
have

(121)

(122)

The solution to this special case can be easily deduced from our general formulations by
letting the radius a of the circular inhomogeneity tend to infinity and the angles {31 and {32
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Fig. 3. A straight crack in a homogeneous piezoelectric material.

approach zero such that aPe = - aPI = I. For example, the energy release rate can be
obtained from (III) and (112) as being

Expression (123) confirms the previous result of Zhang and Tong (1996).

(123)

4.2. Straight crack along the interface of two dissimilar piezoelectrical materials
Consider the problem of a straight crack lying along the y-axis from -I to + I between

two dissimilar materials, as depicted in Fig. 4. In this case, the radius of the circular
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Fig. 4. A straight crack along the interface of two dissimilar piezoelectric materials.
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inhomogeneity, a, tends to infinity and the angles fJI and fJ2 approach zero such that
afJ2 = -afJI = I. Accordingly, the energy rate can be obtained from (128) as being

nl • • • nl • • •
gl =q, =--Po (2P o -po)+--Qo(2Qo-ro )

. - 2Gi 2k: 1

where p~ and r~ are given by (113) and (115).

(124)

4.3. Circular arc-crack in a homogeneous piezoeleclric malerial
Consider a circular arc-crack in an infinite piezoelectric matrix subject to an inplane

electric field as well as an antiplane shear at infinity. as shown in Fig. 5. Without loss of
generality, the centre of the crack L, can be assumed to lie on the positive x-axis and the
central angle subtended by L, is assumed to be 2fJ. The solution can be easily deduced from
our general solution by considering Gi = Gj = GL , k: 1 = kL = kilo e:, = eTs = els. In
this case, the energy release rates can be derived as follows:

for crack tip II, and

na sin fJ .' , •
g2 = 4G

L
[(P o )-(1 +cosfJ)+(Pt)-(\ -cosfJ)-2PoPtsinfJ]

na sin fJ .' , •. 26)+ 4k
ll

[(QoV(1+cosfJ)+(Qt)~(1-cosfJ)-2QoQ~smfJ] (1

for crack tip (2.
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Fig. 5. A circular arc-crack in a homogeneous piezoelectric material.
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4.4. Partially-debonded circular piezoelectric inhomogeneity embedded in an elastic matrix
Consider a partially debonded circular piezoelectric inhomogeneity in an infinite elastic

matrix (els = 0 and kl, = 0), see Fig. 2. Piezoelectric sensors are often made in this
configuration, where a piezoelectric rod is embedded in an elastic material (usually poly
mers). Let us suppose that the material is subjected to uniform stresses O"~x and O"~y at
infinity. In this case, we have

• 20"~,
(127)Po =

l+Jl,(1+m)

-20"?,
(128)p* - ..

o-I+Jll(1+m)

r~ = r~ = 0 (129)

where

(eis)2
(130)m=--.

G~kil

The energy release rate is obtained by substituting (127)-(129) into (111) and (112),
as follows:

for crack tip t l and

for crack tip t2 •

The variation of the normalized energy release rates G,(=gl/(na/2GD(0"°)2) and
G2(=g2/(na/2GD(0"°)2) vs the crack angle f3 is shown in Fig. 6 for the case where

4.0 I
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~
Q)
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~

~ 2.0
Q)
<:
Q)

~
<ii
E
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0.0 IL-_~_...L_~__.J..::""__",""",,=.L__~_-'--_~_-->I

0.0 0.2 0.4 0.6 0.8 1.0
Normalized crack angle, ~/7t

Fig. 6. Variation of normalized internal energy release rates G, and G2 vs crack angle f3 for the case
where (T~, = (T~y = (To. and fll = 10.
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Fig. 7. Variation of normalized internal energy release rate G vs crack angle [i for some specific
values of 1', when G", = G" and G", = O.

(T~\ = (T~1 = (To. The material properties of piezoelectric sensor (e.g. PZT-5H) are taken as
follows (Par. 1990) : G7 = 3.53 x 1010 N;me.k~, = 1.51 x 10 8 C;Vm.ds = 17.0 Cjm2 with
the longitudinal shear modulus of the elastic matrix Gl = G7/10 (Ill = 10). It is observed
from Fig. 6 that Ge is greater than G, for any crack angle f3 for the case where
(T~\ = (T~I = (To; which means that the crack will first propagate at point f 2• It can be also
found that Gereaches its maximum value at f3 = 7[!2 and G, reaches its maximum at f3 = 7[/6
and f3 = 57[;6. This trend is reversed for the case where (T~, = - (T~I = (To (not shown).

Figure 7 depicts the change of the normalized energy release rate G vs crack angle f3
for some specific values of III ( = G7/G l) for the case where (To, = (To. (T:I = O. while Fig. 8
shows the variation of G for the case where (To, = O. (T~1 = (To. In both cases. we have
GI = G2 = G. This implies that under critical loading conditions. the crack will propagate
simultaneously at points f, and f e. It is seen from Fig. 7 that G increases as III increases.
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Fig. 8. Variation of normalized internal energy release rate G vs crack angle [3 for some specific
values of 1'1 when G", = 0 and G;, = G".
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For a given )11, G varies with respect to f3 and reaches its maximum value at f3 = n/3. Figure
8 shows a mirror image of the trend observed in Fig. 7. In this case, the maximum value of
G is reached at f3 = 2nd.

5. CONCLUSION

A generalized and mathematically rigorous model is developed to treat the partially·
debonded circular inhomogeneity problem in piezoelectric materials under antiplane shear
and inplane electric field using the complex variable method. The principle of analytical
continuation and the complex series expansion method were employed to reduce the
formulations into two Riemann-Hilbert problems. This enabled the explicit determination
of the complex potentials inside the inhomogeneity and the matrix. The resulting closed
form expressions were then used to obtain the energy release rate. The validity and versatility
of the current generalized solution have been demonstrated by application to some par
ticular examples and the influence of crack angle and material properties upon the energy
release rate is discussed.
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APPENDIX

The determination ofrhe coeffzc{(,l1ts P~. p~. Q~ al1d Q~
Case I : The matrix is subjected to uniform strains ;.~. and ; ii, as well as uniform electric fields £~ and £:1 at

infinity. In this case. we can obtain

(AI)

(A.2)

(A.3)

(A.4)

Case 2: The matrix is subjected to uniform stresses a;\ and aO, as well as uniform electric displacements D~
and D:' at infinity. As a result. we can deduce the following expressions:
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(A.S)

(A.6)

(A.7)

Q~ = (A.8)

Case 3: The matrix is subjected to uniform strains .,u, and i'o, as well as uniform electric displacements De
and D;' at infinity. This leads to

p~ = (j

(A.9)

(A.IO)

(A. II)

(A.12)

Case 4: The matrix is subjected to uniform stresses aO,. a O, as well as uniform electric fields E~ and E~ at
infinity. In this case, we can find that

(A.13)

(A.14)

(A.IS)

(A.16)


